If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-29x+190=0
a = 1; b = -29; c = +190;
Δ = b2-4ac
Δ = -292-4·1·190
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-9}{2*1}=\frac{20}{2} =10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+9}{2*1}=\frac{38}{2} =19 $
| X+10y+45=180 | | 5g+12=21g | | 4.8g+6=1.8g+21 | | 12-(2x-8)=16 | | X+10y=135 | | 10(n+3)=1/2(24-14n) | | 5/3x+1/3x=5/1/3+7/3 | | 5s-20=-60 | | 5-(x-12)=8 | | (2p^2)+14p+24=0 | | 1-(x/2)=4 | | 2(w-6)+7w=-39 | | 8x=-2(2x+8) | | -8x+-2(2x=8) | | -1=8n-7n | | 36=2(u+8)-6u | | 3=3n-8+5 | | 7m-6-4=4 | | 15=4(v-3)-7v | | 15=(v-3)-7v | | 8−x10=−1 | | r+14=2 | | -2.17=0.35-2r | | 7x=3=6x+10 | | -8=c+6.4 | | 2.7c-4.5=7-32 | | −11−5x=6(5x+4) | | 2x-5+3x+20+2x=180 | | f+42=9 | | k-5/10=k-12/9 | | j+15=7 | | 20+.10x=100 |